1

MANIDHANAEYAM FREE IAS ACADEMY – TNPSC - PRELIMINARY EXAM UNIT – X – APTITUDE & MENTAL ABILITY

AREA & VOLUME

Mensuration-2D

Shape	Area	Perimeter/ Circumference	Figure
Square	a^2	4a	
Rectangle	1×b	2 (l + b)	
Circle	πr ² σ σ σ	2 π r	
Semi-circle	$\pi r^2/2$	r (π+2)	
Quarter Circle	$\pi r^2/4$	(πr/2)+2r	
Scalar Triangle	$\sqrt{[s(s-a) (s-b)(s-c)]},$ Where, $s = (a+b+c)/2$	a+b+c	
Isosceles Triangle	$\frac{1}{2} \times b \times h$	2a + b	
Equilateral Triangle	$(\sqrt{3}/4) \times a^2$	3a	

Right Angle Triangle	$\frac{1}{2} \times b \times h$	b + hypotenuse + h	
Rhombus	$\frac{1}{2} \times d_1 \times d_2$	4 × side	
Parallelogram	b×h	2(l+b)	
Quadrilateral	$\frac{1}{2} \times d \times (h_1 + h_2)$	a+b+c+d	a de
Trapezium	½ h(a+c)	a+b+c+d	
Sector	$\pi r^2 \times (\frac{\theta}{360})$	2r+L	L 0

Q.1) The area of a rectangular land is 240m². If 8 CM is decreased from its length it will become a square. Then the length and breadth of the land respectively are...

- (A) 12 cm, 20 cm
- (B) 20 cm, 12 cm
- (C) 12 cm, 8 cm
- (D) 20 cm, 8 cm

Ans: B

Solution: Let the breadth of the given rectangle be 'X' cm.

Then, length (X + 8) cm

Now area 240cm²

Area of rectangle=length x breadth= (x + 8) x x = 240

$$x^2 + 8x - 240 = 0$$

$$x = 12 \text{ or } x = -20$$

But x cannot be negative, So, x 12

Hence, length= x + 8 = 12 + 8 = 20cm and breadth= 12cm

Q.2) Find the side of the equilateral triangle if the area of an equi-lateral triangle is $900\sqrt{3}$ cm²

- (A) 30 cm
- (B) 90 cm
- (C) 60 cm
- (D) 120 cm

Ans: 60

Solution: The area of equilateral triangle is 90 cm²

Since, the area of equilateral triangle = $\frac{\sqrt{3}}{4}$ a²

Therefore,
$$\frac{\sqrt{3}}{4} a^2 = 900\sqrt{3}$$

$a^2 = 4 \times 900 \Rightarrow a = 60$

Q.3) The semi perimeter of a triangle having sides 15 cm, 20 cm and 25 cm is

- (A) 60
- (B) 65
- (C) 30
- (D) 35

Ans: C

Solution: Perimeter of a triangle= Sum of their side lengths= A+B+C

So, Semi-perimeter= 60/2 = 30

Q.4) Find the area of a semicircle whose radius is 28 cm.

- (A) 618 cm^2
- (B) 144 cm²
- (C) 1232 cm²
- (D) 784 cm²

Ans: B

Solution: Area of semi-circle= $\pi r^2/2$

$$= (1/2) \times (22/7) \times 28 \times 28$$

 $=1232 cm^{2}$

Q.5) A horse is tethered to one corner of a rectangular field of dimensions 60 m by 42 m by a rope 14 m long for grazing. How much area can? The horse left ungrazed?

- (A) 2366 m^2
- (B) 1827 m^2
- (C) 1366 m^2
 - (D) 2212 m^2

Ans: A

Solution: Area of the grazed field = $(\frac{\theta}{360}) \times \pi r^2$

Area of the grazed field = $(\frac{90}{360}) \times \pi \times 14 \times 14 = 154 \text{ m}^2$

Total area of the field = $60 \times 42 = 2520 \text{ m}^2$

Area left ungrazed = Total area of the field - Area of the grazed field $= 2520 - 154 = 2366 \text{ m}^2$

The radius of a cart wheel is 35 cm. How many revolutions does it make in $\mathbf{Q.6}$ travelling a distance of 154 m

- (A) 70
- (B) 189
- (C) 119
- (D) 86

Ans: A

Solution: According to the question, We need to cover 154 m distance

$$154 \text{ m} = 15400 \text{ cm}$$

The distance cover in one revolution = $2\pi r$

$$\Rightarrow$$
 2x (22/7) x 35 = 220 cm

Number of revolutions = 15400/220 = 70

Q.7) The sides of a triangle are 8 m, 10 m and 6 m, then the area of the triangle is

- (A) 18 m^2
- (B) 24 m^2
- (C) 86 m^2
- (D) 72 m^2

Ans: B

Solution: Area of Scalar Triangle= $\sqrt{[s(s-a)(s-b)(s-c)]}$, Where, s = (a+b+c)/2

$$s = \frac{8+10+6}{2} = 12$$

www.mntfreeias.com

$$Area = \sqrt{(12(12 - 8)(12 - 10)(12 - 6))}$$

Area = 24 m²

- Q.8) The ratio of length and breadth of a rectangle is 3:2 respectively. The respective ratio of its perimeter and area is 5:9. What is the breadth of the rectangle in metres?
 - (A) 6 m
 - (B) 8 m
 - (C) 9 m
 - (D) 13 m

Ans: A

Solution: The breadth of the rectangle is 6m.

The ratio of Length and Breadth= 3:2

Let the length and breadth be 3x and 2x respectively

Perimeter of the rectangle= 2(3x + 2x) = IOX

Area of the rectangle= $3x \times 2x = 6x^2$

Now the ratio of perimeter and area is given as 5:9

So, we can form the equation as: $10x/6x^2 = 5/9 \Rightarrow x = 3$

Hence, the breadth of the rectangle is $2x = 2 \times 3 = 6m$

- Q.9) If the side of a square is increased by 20%. Then its area is increased by
 - A) 20%
 - B) 40%
 - C) 60%
 - D) 44%

Ans: D

Solution: Assume initial Area Percentage= 100%

If Area is increased by 20%, then new area percentage= $100 \times (120/100) \times (120/100) = 144\%$

Then, Increased area percentage is 44%

- Q.10) Find the length of the altitude of an equilateral triangle of sides $3\sqrt{3}$ cm
 - (A) 5.4
 - (B) 4.5
 - (C) 4.0
 - (D) 4.2

Ans: B

Solution: Side of an equilateral $\triangle ABC = 3\sqrt{3}$ cm.

$$AC=BC = 3\sqrt{3}$$
 cm

Let
$$AD = h$$
 (Altitude)

BD =
$$3\sqrt{3}$$
 /2 (ALTITUDE BISECTS THE BASE)

$$AB^2 = AD^2 + BD^2 \implies (3\sqrt{3})^2 = h^2 + (3\sqrt{3}/2)^2$$

$$27 = h^2 + (27/4) \implies h^2 = 27 - (27/4) = 81/4$$

$$h= 9/2 = 4.5 \text{ cm}$$

Q.11) What would be the measure of the diagonal of a square whose area is equal to 882 cm²?

- (A) 38 cm
- (B) 42 cm
- (C) 32 cm
- (D) 48 cm

Ans: B

Solution: Area of a square = 882 sq.cms

Area=
$$(Side)^2 = 882$$

Side =
$$\sqrt{882}$$

Diagonal of a square =
$$\sqrt{2}$$
 x side= $\sqrt{882}$ x $\sqrt{2}$

Q.12) The radius and length of arc of a sector are 10 cm and 15 cm respectively. Find its perimeter?

- (A) 35 cm
- (B) 15 cm
- (C) 25 cm
- (D) 30 cm

Ans: A

Solution: Perimeter of Sector=
$$2r+L=(2 \times 10) + 15=35 \text{ cm}$$

Q.13) In a circle of radius 10 cm, an arc subtends an angle of 90° at the centre. Find the area of major sector.

(A)
$$1650/3$$
 cm²

- (B) 1650/9 cm²
- (C) 1650/11 cm²
- (D) 1650/7 cm²

Ans: D

Solution: Area of arc= $\pi r^2 \times (\frac{\theta}{360}) = (22/7) \times 10 \times 10 \times (\frac{90}{360}) = \frac{1650}{7} \text{ cm}^2$

Q.14) The perimeter of a rectangle is 60 metres. If its length is twice its breadth, then its area is

- (A) 160 m^2
- (B) 180 m^2
- (C) 200 m^2
- (D) 220 m²

Ans: C

Solution: Let the breadth of the rectangle be x metres

Then, length of the rectangle = 2x metres

Perimeter of rectangle=2 (Length + Breadth) = 2(2X + X) = 60

So, length = 20 m, breadth = 10 m

Area = $(20 \times 10) = 200 \text{ m}^2$

Q.15) In a circular path, the radii of 2 concentric circles are 56 m and 49 m. Find the area of the circular path.

- (A) 3210 m²
- (B) 3120 m^2
- (C) 2310 m²
- (D) 2130 m²

Ans: C

Solution: Let R, r are radii of two concentric circles.

R = 56 cm ,r = 49 cm
area of the pathway =
$$\pi$$
R²- π r²
= π (56 +49) (56-49) = (22/7) 105 x 7

$$= 22 \times 105 = 2310 \text{ cm}^2$$

Q.16) A playground 60 m x 40 m is extended on all sides by 3 m. What is the extended area

- (A) 366 m^2
- (B) 636 m^2

- $(C) 666 \text{ m}^2$
- (D) 638 m^2

Ans: B

Solution: Length of rectangular park with path= 60 + 3 + 3 = 66m

Breadth of rectangular park with path= 40 + 3 + 3 = 46m

Area of path= Area of park with path-Area of park without path = (66×46) - (60×40) =3036 - 2400= 636 m^2

Q.17) The measures of the angles of a triangle are in the ratio 5: 4:3. Find the angles of the triangle?

- (A) 65° , 60° and 55°
- (B) 85°, 50° and 45°
- (C) 75°, 70° and 35°
- (D) 75°, 60° and 45°

Ans: D

Solution: Consider angles of triangle is 5x, 4x, 3 x

This property of triangle says that all Angles in a triangle sum up and make 180°

Now following the angle sum property.

$$5x + 4x + 3x = 180$$

$$12x = 180 \implies x = 15$$

Angles are 75, 60, 45

Q.18) Breadth of a rectangle is 27 cm less than its length. If the perimeter is 3 m 6 cm then its length and breadth are respectively

- (A) 100 cm, 73 cm
- (B) 90 cm, 63 cm
- (C) 80 cm, 53 cm
- (D) 103.5 cm, 76.5 cm

Ans: B

Solution: Let the length be L cm; hence the breadth = (L - 27) cm

Perimeter =
$$306 = 2 \{L + (L - 27)\} = 4L - 54$$

$$4L = 306 + 54 = 60$$
. OR $L = 90$ cm

Therefore, Length = 90 cm, Breadth = (90 - 27) = 63 cm

- Q.19) The length of a chain used as the boundary of a semi-circular park is 72 m. What is the area of the park?
 - (A) 77 m^2
 - (B) 90 m^2
 - (C) 126 m^2
 - (D) 308 m^2

Ans: D

Solution: The area or the boundary of semi Circular Park

$$=> \pi r + 2r = 72m$$

$$=>r(\pi+2)=72$$

$$=> r = 14 \text{ m}$$

Area of the semi circular park = $\pi r^2/2 = \frac{22}{7} * \frac{1}{2} * 14 * 14 = 308 \text{ m}^2$

- Q.20) The length of building is 40 m and its breadth is 20 m in. A path of the width 1 m is made all round the building outside. Find the area of the path,
 - (A) 144 m^2
 - (B) 134 m^2
 - (C) 124 m²
 - (D) 104 m²

Ans: C

Solution: Area of park= $I \times b = 40 \times 20 = 800 \text{ m}^2$

Area of park with path is= (42×22) = 924 m^2

Therefore, Area of path= Area of park with path — Area of rectangular park =924-800= 124 m²

- Q.21) Area of trapezium is 960 cm². The parallel sides are 40 cm and 60 cm. Find the distance between parallel sides
 - (A) 18.2 cm
 - (B) 19.2 cm
 - (C) 20.4 cm
 - (D) 21.4 cm

Ans: B

Solution: Area of trapezium= $960 = \frac{1}{2} h(a+c) = \frac{1}{2} x h x (40+60) \Rightarrow h = 19.2 cm$

- Q.22) The area of field is the shape of trapezium measures 1440 m². The perpendicular distance between parallel sides is 24m. If the ratio of parallel sides is 5:3, then the length of longer parallel side is
 - (A) 75 m
 - (B) 60 m
 - (C) 120 m
 - (D) 45 m

Ans: A

Solution: Area of trapezium = 1/2(Sum of parallel sides) x Height

$$1440 = \frac{1}{2} \times 24 (5x + 3x) \Rightarrow x = 15$$

The length of longer parallel side= $5x = 5 \times 15 = 75$

- Q.23) If the length of a rectangle is decreased by 50% and the breadth is increased by 80%, then the % change in the area of rectangle is
 - (A) Decreased by 10%
 - (B) Increased by 10%
 - (C) Decreased by 20%
 - (D) Increased by 20%

Ans: A

Solution: change in the area of rectangle= $100 \times (50/100) \times (180/100) = 90\%$. So, decreased by 10%

- Q.24) A plot of land is in the form of a quadrilateral where one of its diagonals is 100 m long. If two vertices on either side of this diagonals are 50 m away from the diagonal. Find the area of the plot of land
 - (A) 5000 m^2
 - (B) 1000 m^2
 - (C) 10000 m^2
 - (D) 500 m^2

Ans: A

Solution: Length of the diagonal = 100 m

Two vertices on either side of diagonal=50m.

Total length of two vertices = 50x2 = 100m

so, area of the plot = 5000m²

- Q.25) A rectangular swimming pool 60 m long, 40 m wide and 1.5 m deep is to be tiled. If the side of the square tile is 50 cm. Find the number of tiles needed.
 - (A) 10200
 - (B) 20400
 - (C) 10800
 - (D) 20800

Ans: C

Solution: Total area to be tiled = $(60 \times 40) + (2 \times 1.5 \times 40) + (2 \times 1.5 \times 60)$

$$= 2400 + 120 + 180 = 2700 \text{ m}^2$$

Area of one square tile = $0.5 \times 0.5 = 0.25 \text{ m}^2$

Number of square tiles = 2700/0.25 = 10800 tiles

- Q.26) The sides (in cm.) of a right-angled triangle are x-1, x, x+1. Then area of the rightangled triangle is
 - (A) 12 sq. cm.
 - (B) 20 sq. Cm.
 - (C) 6 sq. cm.
 - (D) 22 sq. cm.

Ans: C

Solution: As it is a right-angled triangle, we apply Pythagoras theorem

Therefore,
$$(x-1)^2 + x^2 = (x+1)^2$$

$$x^2-4x=0 \Rightarrow x=4$$

So, other sides are 3 and 5

Area right angle triangle= $\frac{1}{2} \times b \times h = \frac{1}{2} \times 3 \times 4 = 6 \text{ cm}^2$

- Q.27) ABCD is parallelogram. P and Q are the mid-points of sides BC and CD respectively. If the area of $\triangle ABC$ is 12 cm², then the area of $\triangle APQ$ is
 - (a) 12 cm2
 - (b) 8 cm2
 - (c) 9 cm²
 - (d) 10 cm2

Ans: C

Solution: \triangle APQ= 3/8 (\blacksquare ABCD)

 $=3/4 (\Delta ABC)$

 $= (3/4) \times 12 = 9 \text{ sq.cm.}$

Q.28) Perimeter of a rhombus is 2p unit and sum of length of diagonals is m unit, then area of the rhombus is

- (a) (1/4) m² p sq unit
- (b) (1/4) mp² sq unit
- (c) (1/4) (m^2-p^2) sq unit
- (d) (1/4) (p²- m²) sq unit

Ans: c

Solution: (1/4) (m^2-p^2) sq unit

Q.29) The outer and inner diameter of a circular path be 728 metre and 700 metre respectively. The breadth of the path is

- (a) 7 metres
- (b) 28 metres
- (c) 14 metres
- (d) 20 metres

Ans: C

Solution: Width of path = Outer Radius - Inner Radius = 364 - 350 = 14 m

Q.30) In a rhombus ABCD, $\Phi A = 60^{\circ}$ and $\Phi AB = 12$ cm. Then the diagonal BD is

- (a) 10 cm
- (b) $2\sqrt{3}$ cm
- (c) 6 cm
- (d) 12 cm

Ans: D

Solution: In rhombus ABCD Using $\cos \theta = B/H$ $\cos 60^{\circ} = BD/12 \Rightarrow \frac{1}{2} = BD/12 \Rightarrow 2BD = 12cm$

Q.31) The perimeter of a sheet of paper in the shape of a quadrant of a circle is 75 cm. Its area would be?

- (a) 100 cm2
- (b) 346.5 cm²
- (c) 693 cm2
- (d) 512.25 cm2

Ans: B

Solution: Perimeter = $(\pi r/2)$ +2r \Rightarrow 75 = (22 r/14) +2r

 $75 = 50r/14 \Rightarrow r = 21$

Area of quadrant= $=\pi r^2/4 = (1/4) \times (22/7) \times 21 \times 21 = 346.5 \text{ cm}^2$

- Q.32) The hypotenuse of a right-angled triangle is 39 cm and the difference of other two sides is 21 cm. Then, the area of the triangle is
 - (a) 270 sq. cm
 - (b) 450 sq. cm
 - (c) 540 sq. cm
 - (d) 180 sq. cm

Ans: A

Solution: 270 cm²

- Q.33) Calculate the perimeter of a quadrant of a circle of radius 21 cm.
 - (A) 65 cm
 - (B) 44 cm
 - (C) 75 cm
 - (D) 88 cm

Ans: C

Solution: Perimeter = $(\pi r/2) + 2r = ((1/2) \times (22/7) \times 21) + (2 \times 21) = 75$ cm

Q.34) If the diagonal of a square is 10 cm, then the side of the square is

(A)
$$5\sqrt{2}$$
 cm

- (B) $2\sqrt{5}$ cm
- (C) $3\sqrt{5}$ cm
- (D) $5\sqrt{3}$ cm

Ans: A

Solution: According to Pythagoras theorem, $a^2 + a^2 = 10^2$

$$2 a^2 = 10^2 \Rightarrow a = 5\sqrt{2} \text{ cm}$$

- Q.35) A school auditorium is 45 m long and 27 m wide. This auditorium is surrounded by a veranda of width 3 m on its outside. Find the area of the veranda
 - (A) 864 m^2
 - (B) 846 m^2
 - (C) 468 m²

(D) 648 m^2

Ans: C

Solution: Area of the veranda= Area of auditorium with veranda- Area of auditorium = (51×33) - $(45 \times 27) = 468$ m²

Mensuration-3D

Shape	Volume (Cubic Units)	Curved Surface Area (CSA) or Lateral Surface Area (LSA) (Square units)	Total Surface Area (TSA) (Square units)	Figure
Cube	A a a a a a a a a a a	LSA = $4a^2$	6 a ²	a
Cuboid	O D X b X h	LSA = 2h(l+b)	2 (lb +bh +hl)	- d
Sphere	$(4/3) \pi r^3$	4π r ²	$4\pi r^2$	F
Hemi-Sphere	(⅔) π r³	2 π r ²	3 π r ²	

Cylinder	π r ² h	2π r h	2πrh + 2πr²	h
,				
Cone	(⅓) π r² h	πrl	πr (r + l)	h

Q.1) Volume of a hollow sphere is 11352/7 cm³. If the outer radius is 8 cm, find the inner radius of the sphere

- (A) 6cm
- (B) 8 cm
- (C) 5 cm
- (D) 7 cm

Ans: C

Solution: Now, given that $V = 11352/7 \text{ cm}^3$

$$\Rightarrow 34\pi (R^3 - r^3) = 11352/7$$

$$\Rightarrow 34 \times (22/7)(8^3 - r^3) = 11352/7$$

$$512-r^3=387 \Rightarrow r^3=125=5$$

Hence, the inner radius, r=5cm.

Q.2) If the ratio of radius of two spheres is 4:7, the ratio of their volume is

- (A) 4: 7
- (B) 64: 343
- (C) 49: 16
- (D) 16: 49

Ans: B

Solution: Ratio of radii of 2 spheres is 4: 7.

Ratio of their volume $=4^3: 7^3 = 64: 343$

- Q.3) The slant height of a right circular cone is 13 m and its height is 5 m. Find area of the curved surface.
 - 1. 490.28 m²
 - 2. 288.28 m²
 - $3.450m^2$
 - 4. 200 m²

Ans: A

Solution: Area of curved surface = π rl

Now
$$r = \sqrt{(132 - 52)} = \sqrt{169 - 25} = \sqrt{144} = 12m$$

Required Area=
$$(22/7) \times 13 \times 12 = 490.28 \text{m}^2$$

- Q.4) Ratio of Volumes of cube and Sphere is $6/\pi$. Find the ratio of side of cube and radius of sphere.
 - (A) 2: 1
 - (B) 3:1
 - (C) 4: 1
 - (D) 5: 1

Ans: A

Solution: Let the side of cube is 'a' and radii of sphere is 'r'.

Now Volume of cube= a^3

Volume of sphere=
$$4/3\pi \times r^3$$

$$a^3 / (4/3) \pi r^3 = 6 / \pi$$

$$a / r = 2 / 1$$

- Q.5) How many coins 3 mm thick and 1.2 cm in diameter should be melted in order to form a right circular cylinder, having base diameter 4 cm and height 27 cm?
 - (A) 850
 - (B) 950
 - (C) 980
 - (D) 1000

Ans: D

Sol: Let the number of coins be n. We have

$$n \times \pi \times (1.2/2)2 \times 0.3 = \pi (4/2)2 \times 27$$

$$\Rightarrow$$
 n = 1000

- Q.6) An open rectangular tank is made of concrete, the sides and base being 30 cm thick. Internally the tank is 8m long, 4 m broad and 3 m high. Find its weight in kg, if concrete weighs 1 kg per 1000 cubic centimetre.
 - (A) 34,548 kg
 - (B) 44,416 kg
 - (C) 39,416 kg
 - (D) 40,000 kg

Ans: A

Solution: The outer dimensions are 8.6 x 4.6 x 3.3 m.

So volume of the block = $8.6 \times 4.6 \times 3.3 - 8 \times 4 \times 3 = 130.548 - 96 = 34.548$ cu. m = 34548000 cu cm,

Weight of the block =34548000/1000 = 34548 kg.

- Q.7) In a cylinder, if radius is doubled and height is halved. then what happens to the curved surface area?
 - (A) Halved
 - (B) Doubled
 - (C) Does not change
 - (D) Four times

Ans: C

Solution: Original curved surface area= $2 \pi rh$

New curved surface area= $2 \pi (2r) (\frac{h}{2}) = 2 \pi rh$ so, Does not change

- Q.8) The length, breadth and height of a hall are 8 m, 10 m, 4 m respectively and the hall has one door of area 3 m x 1.5 m. Find the cost of painting the walls at the rate of 200 per square metre.
 - (A) Rs. 28,800
 - (B) Rs. 59,900
 - (C) Rs. 27,900
 - (D) Rs. 29,900

Ans: C

Sol: Surface area of the room = 2(l + b) X h

$$= 2 * (8+10) * 4$$

$$= 2(18) * 4=144 m2$$

Area of the door = $1 * b = 3 \times 1.5 = 4.5 \text{ m}^2$

Area of the wall: $144 - 4.5 = 139.5 \text{ m}^2$

Cost of painting per square metre = Rs.200

Cost of painting per square metre $139.5 \times 200 = \text{Rs.}2790$

- Q.9) If the capacity of a cylindrical tank is 1848 m³ and the diameter of its base is 14 m, then find the depth of the tank?
 - (A) 12 m
 - (B) 13 m
 - (C) 14 m
 - (D) 15 m

Ans: A

Sol: Volume of cylinder= $1848 = \pi r^2 h = \pi^* 7^* 7^* h \Rightarrow h = 12m$

- Q.10) Three solid metal cubes, whose edges are 6 cm, 8 cm and 10 cm are melted and a new cube is made. Find the length of edge of the new cube.
 - (A) 12 cm
 - (B) 24 cm
 - (C) 20 cm
 - (D) 48 cm

Ans: A

Sol: Volume of the new cube = Sum of the volumes of all the three smaller cubes

$$6^3 + 8^3 + 10^3 = a^3$$
 $\Rightarrow a^3 = 1728$ $\Rightarrow a = 12cm$

- Q.11) A heap of paddy is in the form of a right circular cone whose diameter is 4.2 m and height 2.8 m. If the heap is to be covered exactly by a canvas to protect it from rain, find the area of the canvas required.
 - (A) $22.6 \,\mathrm{m}^2$
 - (B) 27.2 m^2
 - (C) 23.1 m^2
 - (D) 11.3 m²

Ans: C

Sol: diameter =4.2 m, radius =2.1 m Also given, height =2.8 m

Let 'I' be the slant height of the cone

$$l = \sqrt{(h^2 + r^2)} = \sqrt{(2.8^2 + 2.1^2)} = \sqrt{12.25} = 3.5 \text{ m}$$

Curved surface area of cone = π rl = 722×2.1×3.5 =23.1 m²

- Q.12) The radii of two right circular cylinders are in the ratio 4:3 and their heights are in the ratio 7:4 then the ratio of their curved surface areas is in the ratio
 - (A) 3:5
 - (B) 5:3
 - (C) 3:7
 - (D) 7:3

Ans: D

Solution: $S2/S1=2\pi r_1h_1/2\pi r_2h_2=(4/3)^*(7/4)=7:3$

- Q.13) A wall is to be constructed with length 60 m, breadth 3 m and height 5 m. How many bricks are required to construct a wall with length 30 cm, breadth 15 cm and height 20 cm?
 - (A) 135,000
 - (B) 150,000
 - (C) 175,000
 - (D) 100,000

Ans: D

Solution: Number of bricks= Volume of wall/ volume of brick= (60*3*5)/(0.3*0.15*0.2)=100,000

- Q.14) Using the clay, Malar makes a cone, a hemisphere and a cylinder have equal bases and the heights of the cone and a cylinder are equal. They same as the common radius then find the ratio of their respective volumes
 - (A) 1:2:3
 - (B) 1:2:4
 - (C) 1:2:6
 - (D) 1:2:8

Ans: A

Solution: Bases of a cone, hemisphere and a cylinder are same Let radius of each = r and height of each = r

Volume of cone = $1/3\pi r^2 \times r = 1/3\pi r^3$ Volume of hemisphere = $2/3\pi r^3$ volume of cylinder= $\pi r^2(r) = \pi r^3$

ratio in their volumes = $(1/3)\pi r^3$: $(2/3)\pi r^3$: πr^3 =1/3:2/3:1=1:2:3

- Q.15) Spherical metal ball of radius 6 cm is melted and casted into small spherical balls having diameter 6 mm. How many small balls can be casted
 - (A) 1000
 - (B) 2000
 - (C) 6000
 - (D) 8000

Ans: D

Solution: Number of balls= Volume of Sphere/ Volume of spherical ball Number of small balls = $\{(4/3) \times (22/7) \times 6 \times 6 \times 6\} / \{(4/3) \times (22/7) \times 0.6 \times 0.6 \times 0.6\} = 8000$

- Q.16) The radii of two circular ends of a frustum shaped bucket are 15 cm and 8 cm. If its depth is 63 cm, find the capacity of the bucket in litres
 - (A) 2.6994 litres
 - (B) 269.94 litres
 - (C) 26.994 litres
 - (D) 2699.4 litres

Ans: C

Solution: The volume of the bucket (frustum)= $(1/3)\pi(R^2+r^2+Rr)$

$$=(1/3)\times(22/7)\times63\times(15^2+8^2+15\times8)=29664/1000$$
 litres

Thus, the capacity of the bucket =26.994 litres.

- Q.17) Using clay, a student made a right circular cone of height 48 cm and base radius 12 cm. Another student reshapes it in the form of sphere. Find the radius of the sphere.
 - (A) 12 cm
 - (C) 9 cm
 - (B) 15 cm
 - (D) 14 cm

Ans: A

Solution: $(4/3)\pi r^3 = (1/3) \times \pi \times (12)^2 \times (48) \Rightarrow 4 \times r^3 = (12)2 \times (48)$

$$r^3 = (12)^3 \Rightarrow r = 12 \text{ cm}$$

- Q.18) The radius of a spherical balloon increases from 7cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in two cases
 - (A) 1: 27
 - (B) 1:4
 - (C) 1:9
 - (D) 1:8

Ans: B

Solution: Given radius r1=7 cm, r2=14 cm

Initial surface area $(r1=7)=4\pi r^2=4\times(22/7)\times7\times7=616$ cm²

Surface area $(r2=14)=4\pi r^2=4\times(22/7)\times14\times14=2464 \text{ cm}^2$

Ratio of surface area =2464/616=1/4

- Q.19) The volume of a solid hemisphere is 29106 cm³. Another hemisphere whose volume is two-third of the above is carved out. Find the radius of the new hemisphere.
 - (A) 21.5 cm
 - (B) 12 cm
 - (C) 21 cm
 - (D) 23 cm

Ans: C

Solution: The volume of hemisphere = 29106 cm³

Let the radius of another hemisphere = R

The volume of new hemisphere = $2/3 \times 29106 = 19404 \text{ cm}3$

$$(2/3) \pi R^3 = 19404 \Rightarrow 19404 \times 3/2 \times 7/22$$

$$9261 = r^3 \Rightarrow r = 21$$

- Q.20) A hemispherical tank of radius 1.75 m is full of water. It is connected with a pipe which empties the tank at the rate of 7 litres per second, how much time will it take to empty the tank completely?
 - (A) 27 minutes
 - (B) 26 minutes
 - (C) 72 minutes
 - (D) 62 minutes

Ans: A

Solution:

$$7000 x = \frac{2}{3} \times \frac{22}{7} \times \underline{175} \times 175 \times 175$$

$$x = \frac{2}{3} \times \frac{22}{7} \times \frac{175 \times 175 \times 175}{7000}$$

$$= 1604.16 \text{ seconds}$$

$$x = \frac{1604.16}{60} \text{ minutes}$$

$$x = 26.73 \text{ minutes}$$

$$\approx 27 \text{ minutes}$$

- Q.21) The length, breadth and height of a room are respectively 12 metres, 9 metres and 6 metres. How many cubic boxes are needed to fill the room if the Bide of each box is 1.5 metres?
 - (A) 1072
 - (B) 648
 - (C) 324
 - (D) 192

Ans: D

Solution: Volume of room =
$$l^*b^*h = 12 * 9 * 6 = 648 \text{ m}^3$$
 volume of one cubic box = $a^3 = (1.5)^3 = 3.375 \text{ m}^3$ so no of boxes required = $648/3.375 = 192$

- Q.22) A hollow cylindrical iron pipe is of length 35 cm. Its outer and inner diameters are 10 cm and 8 cm respectively, Find the weight of the pipe if 1 cu.cm of iron weighs 7 gm.
 - (A) 6.93 kg
 - (B) 9.90 kg
 - (C) 7.53 kg
 - (D) 7,93 kg

Ans: A

Solution: volume of the hollow cylinder =
$$V = \pi R^2 h - \pi r^2 h$$

 $V = (22/7) \times 35 \times ((10/2)^2 - (8/2)^2) = 990 \text{ cm}^3$
Weight of 1 cm³ of the metal = 7 gm/cm³
 $m = 990 \times 7 \text{ gm} = 6930 \text{ gm} = 6.93 \text{ kg}$

- Q.23) Two iron sheets spherical in shape each of diameters 6 cm are immersed in the water contained in a cylindrical vessel of radius 6 cm. the level of the water in the vessel will be raised by?
 - (a) 1 cm
 - (b) 2 cm
 - (c) 3 cm
 - (d) 6 cm

Ans: B

Solution:

$$egin{aligned} 2 imes \left(rac{4}{3} imes\pi imes r^3
ight) &=\pi R^2 h \ \Rightarrow 2 imesrac{4}{3} imes\pi imes 27 &=\pi imes 36 imes h \ h &=rac{27 imes 4 imes 2}{36 imes 3} \ \Rightarrow h &=rac{8 imes 27}{3 imes 36} &= 2cm \end{aligned}$$

Q.24) Total surface area of hollow hemisphere is equal to

- (A) $2\pi(R^2 + r^2)$ sq. units
- (B) $2\pi (R^2 r^2)$ sq. units
- (C) π (R² + r²) sq. units
- (D) $\pi(3R^2 + r^2)$ sq. units

Ans: B

Solution: π (3R² + r²) sq. units

Q.25) The cylinder whose base is not in circular form is called

- (A) Circular cylinder
- (B) Right circular cylinder
- (C) Oblique cylinder
- (D) Irregular Cylinder

Ans: C

Solution:

- (1) If the base of a cylinder is not circular then it is called Oblique cylinder.
- (2) If the base is circular but not perpendicular to the axis of the cylinder, then the

cylinder is called Circular cylinder.

- (3) If the axis is perpendicular to the circular base, then the cylinder is called Right circular cylinder.
- Q.26) A circus tent is cylindrical to a height of 3 m and conical above it. If the base radius is 52.5 m and slant height of the cone is 53 m, find the area of canvas required to make the tent.
 - (A) $315 \pi \text{ m}^2$
 - (B) $3097.5 \pi \text{ m}^2$
 - (C) $2782.5 \pi \text{ m}^2$
 - (D) $9735 \pi \text{ m}^2$

Ans: B

Solution: C.S.A of cylinder = 2π rh

C.S.A. of conical portion $S2=\pi rl$

Area of canvas of tent = $S1+S2 = 2\pi rh + \pi rl = \pi r(2h+l)$

 $=(\pi)\times52.5(3\times2+53)=3097.5 \pi \text{ m}^2$

- Q.27) The breadth, height and volume of a cuboid are 10 cm, 11 cm and 3080 cm³ respectively. Find the length of the cuboid.
 - (A) 21 cm
 - (B) 28 cm
 - (C) 24 cm
 - (D) 30 cm

Ans:

Solution: Vol. of Cuboid=I x b x h = L x $10x11=3080 \Rightarrow L=3080/110=28cm$

- Q.28) The radius and height of cylinder and cone are equal. If the volume of cylinder is 120 cm³, then the volume of cone is
 - (A) 90 cm³
 - (B) 40 cm^3
 - (C) 30 cm³
 - (D) 100 cm^3

Ans: B

Solution:

Volume of a right circular cone = $(1/3)\pi r^2h$

Volume of right circular cylinder = $\pi r^2 h$

Volume of a right circular cone = (1/3) Volume of right circular cylinder= (1/3) * 120= 40 cm³

- Q.29) A rectangular paper of width 14 cm is rolled along with its width and a cylinder of radius 20 cm is formed. Find the volume of the cylinder.
 - (A) 980 cc
 - (B) 1400 cc
 - (C) 1960cc
 - (D) 17600 cc

Ans: D

Solution: Radius of cylinder = r= 20 cm.

Volume of the cylinder = $\pi r^2 h = (22/7) \times 20 \times 20 \times 14 = 17600 \text{ cm} 3$

- Q.30) Surface Area of a hemisphere is 2772 cm². Then the total surface area of hemisphere is
 - (A) 4158 cm²
 - (B) 3882 cm²
 - (C) 3172 cm^2
 - (D) 4258 cm²

Ans: A

Solution: CSA of hemisphere = $2^{\pi}r^2$

$$\Rightarrow 2^{\pi} r^2 = 2772 = 2 \times \frac{22}{7} \times r^2 = 2772$$

$$\Rightarrow r^2 = \frac{2772 \times 7}{2 \times 22} = 441 \Rightarrow r = 21 \text{ cm}$$

TSA of hemisphere = ${}^{3}\pi r^2 = 3 \times \frac{{}^{22}}{7} \times 21 \times 21 = 4158 \text{ cm}$

Q.31) The volume of a sphere-shaped shot-put is 310.464 cu.cm, then the radius is

- (A) 4.2
- (C) 6.4
- (B) 4.8
- (D) 8.4

Ans: D

Solution: Volume of shot-put, $V=(4/3)\pi r^3 = 310.464$ $310.464=(4/3)^*(22/7)^* r^3 \Rightarrow r = 8.4 \text{ cm}$

Q.32) What is the volume of a cube whose diagonal measure is $4\sqrt{3}$ c.m?

- (A) 16
- (B) 19
- (C) 22
- (D)64

Ans: D

Solution: Given, diagonal of a cube $4\sqrt{3}$ cm

Let the length of an edge of the cube be x cm

Then diagonal of the cube= $a\sqrt{3} = 4\sqrt{3} \Rightarrow a=4$

volume of the cube= a^3 = 64 cm³

Q.33) Three solid cubes of sides 1 cm, 6 cm and 8 cm are melted to form a new cube. Find the total surface area of the cube so formed?

- (A) 384 cm²
- (B) 486 cm2
- (C) 456 cm2
- (D) 430 cm2

Ans: B

Solution: Volume of cube formed = volume of cube 1 + volume of cube 2 + volume of cube 3

$$a^3 = 1^3 + 6^3 + 8^3 = 729 \text{ cm}^3 \Rightarrow a = 9$$

Surface area of the cube formed =6 a^2 = 6 x 9 x 9 = 486 cm²

- Q.34) The ratio of the volume of a cube to that of a sphere which will exactly fit inside the cube is
 - $(A) \pi:4$
 - (B) $1: \pi$
 - (C) $6: \pi$
 - (D) π : 1

Ans: D

Solution: Let the side cube be 'a' cm.

So, the total surface area of the cube = $6a^2$ cm²

And, total surface area of the sphere = $4 \times \pi \times (a/2)^2 \text{ cm} 2$

$$4 \times \pi \times (a/2)^2 = 6a^2 \implies 6 : \pi$$

- Q.35) A cylindrical shaped well of depth 20m and diameter 14m is dug. The dug out soil is evenly spread to form a cuboid-platform with base dimensions 20m×14m. Find the height of the platform.
 - (A) 44 m
 - (C) 22 m
 - (C) 33 m
 - (D) 11 m

Ans: D

Solution: 20*14*x=22*7*20

2*x=22

x=11 m